

The Benefits of Rapid Flood Modeling

Hamish Hall Aminul Chowdhury Marieke De Groen

Understanding flood risk

1D modelling

2D modelling

Home > Products

COMT VIN

TUFLOW ==

Deltares systems

design and analysis tools

> Hydro

SOBEK Suite

Home Products Downloads Support News Forum Training

Where Does it go?

Lessons Learnt

- Nigeria
- New Orleans
- UK
- Azerbaijan
- Columbia
- Thailand
- Egypt
- Ireland

The problems are self evident

- The risks are not well understood
- People are powerless during the event
- The economic, social and environmental impacts are enormous and long term

Am I part of the problem?

Why does Oshakati flood? What can be done to improve the situation?

Data

Shuttle Radar Topography Mission

lome	Mission	About Data	Images	Site Map

Mapping The World In 3 Dimensions

http://srtm.usgs.gov/index.php

- Aller		2.00	E2 10		20	1 0	5	EN ER		50 M			~	
	-			BIR	2017	ane	3 11	MIC	38			n /	-	-
	~			210	1011	MIZ	3 10	NI	12	ITF (~
		-					n V		210					
									200			and the second second	_	
Etosha Safan Lo	dge, Na	mbia		and the second	ar en e	-								
Navination	A WAR			ALC: NO.										
Home Pade														
Comunit														
CAITER	Yearl	y Repor	rts:			Mont	hly Rep	orts:						
weather	2012	- 0	K			Mar	ch 2010		OK	1				
Etosha Monthey		Surger and	41					1	-	-	ر بيشير ر		2	
Reports						10000				(cm)		W PASA		
Etosha Trenda	-					<u></u>				2400	2405	_		
Etosha Records			Dep	Aun	Ave					LST	1.57	Avn		
Etosha High/Low	Min.	Avg	From	Dew	Wet	Heating	Cooling	Sig	Sun	100	S	Sea	Avg	10
Records	Setu	203.04	Normai	pt.	Bulb	1.000	-000MA	Long	10.0	Snow	Water	Level	spa	
UV Forecast										1.90	Ednin			-
Sundanan	18.6	23.9		19.2	20.8	0.00	05.6		03.7	0.00	02.8	1008.4	05.0	
Sharan	20.9	24.7	-	20.1	21.7	00.0	06.4		04.5	00.0	01.3	1007.1	09.4	
Almenec	20.4	26.0	-	18.7	21.3	0.00	07.7		06.7	00.0	0.00	1008.9	08.5	
About	10.9	25.2		10.7	21.0	0.00	06.9	100	04.7	00.0	00.0	1006.3	07.4	
Website Map	10.0	24.3	_	17.0	20.0	60.0	05.4	100	03.5	00.0	00.0	1007.4	15.5	
c	19.7	23.3		18.1	20.0	60.5	05.0	122	04.3	00.0	000	1010 1	14.0	
Nomibia	20.6	22.6		15.8	18.4	00.0	04.3	1.2.2	00.0	00.0	00.0	1010.3	09.6	
Weather	18.1	23.7		16.5	19.2	0.00	05.4		08.3	00.0	0.00	1008.9	10.4	
Stations	19.5	24.1		17.9	20.2	0.00	05.8		04.0	00.0	00.5	1008.4	05.0	
Windbook	19.4	25.0	-	17.8	20.4	0.00	06.7		02.9	0.00	0.00	1008.3	09.7	
windhoes,	19.7	24.8	-	12.3	20.0	0.00	06.3		00.0	00.0	0.00	1009.1	07.4	
Swakopmund	19.8	27.7	-	14.6	19.7	0.00	09.4	HOT	07.6	00.0	0.00	1007.3	05.5	
Auas Mnts	19.7	27.7	-	12.8	18.9	0.00	09.4	HOT	09.3	00.0	20.3	1004.5	09.B	
Hochfield	20.4	25.2		13.9	18.5	00.0	08.9		01.8	00.0	0.00	1006.3	10.5	
Kalahari	20.1	25.6		37.5	20.3	0.00	07.3		05.3	00.0	00.0	1007.5	05.4	
Farmhouse	18.2	25.7		15.2	19.3	0.00	87.4	1000	07.5	00.0	00.0	1006.0	06.8	
Namb Desert	16.9	20.4	-	12.3	18.2	0.00	96.1	101	09.0	00.0	00.0	1006.7	05.8	
Capon	10.3	25.8		12.3	10.0	90.9	07.5	HOT	05.3	00.0	00.0	1007.8	07.3	
Roadhouse	20.9	22.8		13.2	37.8	00.0	05.5		02.4	00.0	01.5	1007.4	44.6	
Floin Aur Vieto	70.0	20.0		12.6	18.4	00.9	07.5		05.0	00.0	00.0	1997.4	48.4	
Country of the second	20.4	25.0		17.4	20.0	80.9	08.7	32	05.0	00.0	00.0	1004.0	07.0	
etosha baran	48.5	24.4	1.2	17.1	19.8	00.0	06.1	122	04.9	00.0	00.0	1004.9	08.2	
Damara	17.6	23.7	12	18.5	20.4	00.0	05.4	132	04.9	00.0	40.9	1005.6	07.0	
Mopane	17.4	20.1	-	18.0	18.8	00.0	01.8	122.5	00.4	00.0	06.6	1009.6	05.5	
Omuramba	17.2	23.3	1	18.4	20.2	0.00	05.0	1222	09.0	00.0	00.3	1010.3	06.7	
Hunting	19.4	22.9	-	19.2	20.5	0.00	04.6		03.3	00.0	16.8	1008.7	07.5	

http://weather.namsearch.com/etosha/wxcli mate.php?date=climatedataout32010

Hydraulics

Bare Earth Model

Hydraulics

Manipulated Model

Flood Defences

Figure 7: Typical dyke section with dual carriageway

http://www.envirod.com/pdf/proposed_flood_mitigation_measurements/OFM%20 scoping%20report%2001_05_2012%20to%20public.pdf

Adaptation & Reslience

Strategic Planning

Emergency Planning

Flood Warning

In Summary

In Summary

Where next?

Where next?

Thank you

Hamish Hall – h.hall@royalhaskoning.com

Statistical analysis of rainfall at Kunene using Generalised Logistic (GL), Gumbel and best fit method.

- Namibia Weather site
 <u>http://weather.namsearch.com/etosha/wxclimate.php?date=climatedataout32010</u>
- Global Information and Early Warning System of Food and Agricultural Organisation of the United Nations (FAO/GIEWS) (ttp://www.fao.org/giews/english/ierf/list_cross.asp?code=172)