

Resilience in Urban Networks

Assessing Freetown's transportation system under meteorological hazards

Prof. Marta Gonzalez, DCRP & Andrew Nelson University of California, Berkeley Xavier Espinet, Fatima Arroyo-Arroyo, and Dunstan Matekenya

World Bank Group

Objective

Planning from the **accessibility** perspective from **neighborhoods** to Education and Health facilities taking into account the **demand or limited capacity** into these facilities

Explore vulnerability of neighborhoods and services both

Major hazards

"Resilience" has various meanings

How systems resist, absorb, adapt, transform, and recover after stress or disasters.

We view "resilience" as the flipside of "vulnerability" to hazards

3

Resilience in the Freetown Road Network

Part I

- Identify vulnerable and critical roads
- Simulate hazard scenarios and test road intervention sites

INTRODUCTION: Resilience

Estimating Risks

Input: Hydrological and Geological Risk Factors

Output: Hazard for river flooding, landslides, mudslides, sea level rise, and storm surge

We developed a project with 3 key goals:

Resilience in the Freetown Road Network

incl. how demand might change for projects if disaster happens and the network balance shifts.

Network Science Analysis

KEY CONCEPT: BETWEENNESS CENTRALITY

Quantifies the number of times a node lies on any shortest paths in the graph, including every possible pair of origin and destination points. Its calculation is given by:

BC serves as a strong measure of how important each node is for all origin-destination node pairs within the transportation network

Through matrix, we select scenarios

Resilience in the Freetown Road Network

Estimated Changes in the Road Network

For current interventions

Resilience in the Freetown Road Network

Impacts of current developments

Changes in Betweeness

The importance of certain projects changes significantly during hazard scenarios

• Allen Town Transit Market

• Lumley

Resilience in the Freetown Road Network

Part II

- Quantify Vulnerability as the Access to Key Facilities Service Area such as Schools and Health Centers
- · Apply state of the art Climate Projection methods

Accessibility via Road Network - Schools

13

Flood Model Method from

US Army Corps of Engineers' free software: HEC-HMS, HEC-RAS, and their related plug-ins for use with ArcMap

Integrates satellite images with ancillary information from GIS to do a hydraulic simulation model

Part III

- Calculate trip demand informed by Call Detailed Records (CDRs)
- Focus vulnerability analysis on streets serving transit system

Call detailed records: Trip Production and Attraction

Within each of these regions, blue and red dots indicate the

net attraction: (trips received - trips generated) or

net production: (trips generated - trips received)

Using CDR-based OD matrix in the morning peak

Road Classification adding CDR weights

Transit Routes

Flooding Scenario on Transit Routes

Transit corridor on Western Area shown as most critical in terms on enhancing climate resilience of Freetown urban mobility

Conclusions and Discussion

- This methods has:
 - Identify needs for climate resilience on urban mobility
 - Determine accessibility constraints to critical social services
 - Incorporate real transport demands with CDR
 - Define priority for transit corridor improvements from resilience angle
- Future: We will incorporate 2015 Census data to add an additional equity component – poverty

Thank you very much for your attention!

Questions or Comments?

Appendix

22

Population and Road Network

Demand and Accessibility Shifts

Vulnerability Metrics

Seasonal Risks

Population Centers

 Population sources are defined by centers of ~3000 people

Resilience in the Freetown Road Network

Key Location Types

Resilience in the Freetown Road Network

28

Accessibility measures per center (H, HC)

Resilience in the Freetown Road Network

Accessibility measures (P, Sch)

Resilience in the Freetown Road Network

New Data & New Opportunities

• Data Source 1:

Multi-hazard event maps plus modeling techniques identify major weather hazards (major floods and Landslides)

• Data Source 2:

Local university collaboration identifies minor weather hazards, temporary flooding and water accumulation on unpaved roads

S. Figure 1: Method: Neighborhood Generation, a) Neighborhood population size; b) Freetown CBD detail

S. Figure 2: Neighborhood Generation and Accessibility Calculation: Distribution of neighborhood distance to health facilities

S. Figure 3: Demand Distribution: a) Senior Secondary Schools (n = 208); b) Freetown Central Business District Detail; c) Distribution with fit

S. Figure 4: Demand Distribution: a) Junior Secondary Schools (n = 353); b) Freetown Central Business District Detail; c) Distribution with fit

S. Figure 5: Demand Distribution: a) Primary Schools (n = 746); b) Freetown Central Business District Detail; c) Distribution with fit

S. Figure 6: Demand Distribution: a) Pre-Primary Schools (n = 532); b) Freetown Central Business District Detail; c) Distribution with fit

S. Figure 7: Demand Distribution: a) Hospitals (n = 44); b) Freetown Central Business District Detail; c) Distribution with fit

S. Figure 8: Demand Distribution: a) Health Centers (n = 164); b) Freetown Central Business District Detail; c) Distribution with fit

Percentage Population Served

S. Figure 9: Demand Distribution: a) Pharmacies (n = 50); b) Freetown Central Business District Detail; c) Distribution with fit

S. Figure 10: Demand, Size of service areas compared to population served: a) Education facilities; b) Health Facilities

S. Figure 11: Road Importance Process - Service Centrality for: a) health facilities, b) education facilities, and c) all facilities

S. Figure 12: Combining Service Centrality and Global Connectivity in the road network allows road segments to be categorized by anticipated usage: a) road categories in Western Area Urban and Western Area Rural; b) Freetown CBD detail; c) scatterplot of service centrality and edge betweenness centrality of network edges

S. Figure 13: Seasonal Flooding Hazard Extent, a) Areas with slope of less than five degrees; b) Sinks, or areas with no outlet for drainage, c) Union of 11a) and 11b), representing the extent of expected seasonal flooding risk

S. Figure 14: Scenario 1 Results: a) Demand shifts for affected Health Centers; b) Health Center accessibility shifts for affected neighborhoods; c) Distribution of Health Centers accessibility shifts for affected neighborhoods

S. Figure 15: Scenario 1 Results: a) Demand shifts for affected Pharmacies; b) Pharmacy accessibility shifts for affected neighborhoods; c) Distribution of Pharmacies accessibility shifts for affected neighborhoods

S. Figure 16: Scenario 1 Results - Road Network (Major Flooding Hazard), a) Nonzero changes in service centrality and distribution; b) Non-zero changes in edge betweenness centrality and distribution

