

Unmanned Aerial Vehicles (UAV) to assist Disaster Response and Recovery – Experience from Cyclone Gita Tonga (Feb 2018) -

Leveni 'Aho Director

National Emergency Management Office (NEMO) TONGA

May 18th 2018 Understanding Risk conference 2018, Mexico City

Location : The South Pacific/Oceania. East of Fiji and South of Samoa.

Total Land Area : 750 square kilometers, Consists of 169 islands, 36 are inhabited.

Population : 107,122 (2016 census)

Government : Parliamentary Constitutional Monarchy

Economics : Tourism, Agriculture, Fisheries Ranked 2nd most vulnerable in the world to Natural Disaster. (UN Natural Disaster Risk Index)

Areas affected : Tongatapu and Eua Time : Monday <u>12th February 2018</u> Average Wind Speed : 130km/h – 195km/h Storm Surge : 1m above average high tide level Rainfall : 200mm within 24hrs Last Tropical Cyclone of this category : 1982

Impact

- Approx. 75% of population (80,000 people) affected
- Essential Services : power lines, 75% schools affected,
- 25% houses affected (approx. 800 houses destroyed, 4,000 damaged)
- Public Buildings affected
 - : Domestic Airport
 - : Parliament Building
 - : Tonga Metrological Services Building
- No loss of life

Response

data

- Data collection: use of Kobo tools
- Clusters activated
- Immediate relief effort : from preposition of emergency relief goods and NEMO NFI stock.
- Coordination of international relief efforts
- National Emergency Fund, CERC fund WB, PCRFI insurance ADB facilities.

NEMO UAV data collection for TC Gita

Day 2: NEMO/Tonkin&Taylor rapid situation survey @ below 100ft

Day 2: Joint MFAT/NZ fire department and DFAT/Rapid Response team collected 360° UAV data of destroyed public buildings for rapid safety survey database @ below 100ft

Day 8: NEMO/WB UAV mapping@1000 ft

UAV mapping for TC Gita

Why use UAVs?

- More affordable than satellite and aircrafts <u>at the small island scale</u> (< 250 km2)
- Very rapid to deploy on site (less than 12 hours)
- The cost of flying the same area multiple times a year is marginal

UAV mapping under emergency situations

Kingdom of Tonga

Baseline data from October 2017

Post event data from February 2018

NEMO WB UAV4Resilience campaign in Oct 2017

2.5 weeks 200km² with Fixed wing UAV to understand best practices

Kingdom of Tonga

NEMO UAV mapping under emergency situations

- Team started flying one week after event, for <u>6 days</u>, covered <u>300km²</u>
- Lower quality compared to pre-Gita images
- Flying the UAV is only a tiny part of the workflow. Preparation and post-data collection take long. *Low internet bandwidth* and *processing power* are major issues.

NEMO Use case 1: Remote Housing Damage Assessment

Coordinated within a small group of volunteers

Simple classification of "damaged" (<50%) and "destroyed" (>50%)

Results:

UAV assessment identified ~2450 damaged structures

Ground survey identified ~4000

Use case 2: School reconstruction planning using the pre- and post-Gita UAV images

Kingdom of Tonga

2 classrooms destroyed

GPS Fuuatamou

GPS Holonga

Use case 3: Validation of claims for housing NEMO damage support

Question	Response
start	2018-03-07T12:58:25.751+13
end	2018-03-07T13:00:17.962+13
Date	2018-03-07
Name of Village	Kolonga
Name of Affected House Hold	Semisi Filikitonga
Owner of the Building	AUTOMATIC
Level of Damage	partially_damage
Partially Damage	
GPS Location	-21.12620729 -175.073227 60.0 4.0
_version	vrusZ5m8EDqoYej2TLhioi
meta/instanceID	uuid:c8a59e3a-1fad-441f-8d02- 5719eafcce19

Summary

- Compliment Kobo tool data collection for damage and claims validation
- Create Baseline data, compare post-disaster data against baseline

Challenges

- Can UAVs be used to capture images of Remote islands in emergencies?
- Fast mobilization of the team (MFAT/DFAT)
- Post-processing, analysis needs to be faster
- Air safety need permission from CAA well ahead of time, especially if flying at high altitude

Malo aupito.