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a b s t r a c t

A variety of model-based approaches for supporting decision-making under deep uncertainty have been
suggested, but they are rarely compared and contrasted. In this paper, we compare Robust Decision-
Making with Dynamic Adaptive Policy Pathways. We apply both to a hypothetical case inspired by a
river reach in the Rhine Delta of the Netherlands, and compare themwith respect to the required tooling,
the resulting decision relevant insights, and the resulting plans. The results indicate that the two ap-
proaches are complementary. Robust Decision-Making offers insights into conditions under which
problems occur, and makes trade-offs transparent. The Dynamic Adaptive Policy Pathways approach
emphasizes dynamic adaptation over time, and thus offers a natural way for handling the vulnerabilities
identified through Robust Decision-Making. The application also makes clear that the analytical process
of Robust Decision-Making is path-dependent and open ended: an analyst has to make many choices, for
which Robust Decision-Making offers no direct guidance.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Uncertain changes in climate, technological, socio-economic
and political situations, and the dynamic interaction among these
changes, and between these changes and interventions, pose a
challenge to planners and decision-makers. Due to these un-
certainties, there is a risk of making an inappropriate decision (too
little, too much, too soon, or too late). There is a need for ap-
proaches that assist planners and decision-makers with making
long-term plans and informed policy decisions under deep uncer-
tainty. Weaver et al. (2013) argue that exploratory model-based
approaches are highly suitable for supporting planning and
decision-making under deep uncertainty. In exploratory modeling,
modelers account for the various unresolvable uncertain factors by
conducting series of computational experiments that systemati-
cally explore the consequences of alternative sets of assumptions
pertaining to the various deeply uncertain factors (Bankes, 1993;
Bankes et al., 2013). A literature is emerging that adopts this
exploratory modeling approach in support of decision-making
fax: þ31 (0)15 278 6233.
akkel), marjolijn.haasnoot@
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under deep uncertainty (e.g. Auping et al., 2015; Bryant and
Lempert, 2010; Dalal et al., 2013; Groves et al., 2014; Groves and
Lempert, 2007; Hadka et al., 2015; Halim et al., 2016; Hall et al.,
2012; Hallegatte et al., 2012; Herman et al., 2015; Kasprzyk et al.,
2013; Kwakkel et al., 2013, 2015; Kwakkel and Pruyt, 2013, 2015;
Kwakkel et al., 2012; Lempert, 2002, 2003; Lempert and Collins,
2007; Lempert and Groves, 2010; Maier et al., 2016; Matrosov
et al., 2013a, 2013b; Parker et al., 2015; Pruyt and Kwakkel, 2014;
Thissen et al., 2016). A substantial fraction of this literature fo-
cuses on model-based decision support for environmental systems
undergoing change.

Over the last decade, climate adaptation research has increas-
ingly focused on supporting decision-makers in developing climate
adaptation strategies1 and understanding the tradeoffs among
different climate adaptation options (Maru and Stafford Smith,
2014). This research focus represents a shift from a focus on un-
derstanding climate change impacts to a solution-oriented focus on
supporting climate adaptation decision-making through iterative
risk management. Within the broader literature on decision-
oriented climate adaptation, one strand of research has a strong
1 In this manuscript we use strategy, policy, policy option, and plan
interchangeably.
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analytical focus on designing effective climate adaptation strategies
in the presence of a wide variety of presently irresolvable deep
uncertainties (Dessai and Hulme, 2007; Dessai et al., 2009; Lempert
et al., 2003; Maru and Stafford Smith, 2014; Wise et al., 2014).
Because of the presence of unavoidable uncertainty, decision-
makers are advised to look for robust decisions that have satisfac-
tory performance across a large range of plausible futures. One of
the key design principles for such robust decisions is to make plans
that are flexible and can be adapted over time in response to how
the world actually unfolds (Haasnoot et al., 2012; Hallegatte, 2009;
Kwakkel et al., 2010; Walker et al., 2013). The acceptance of un-
certainty as an inevitable part of long-term decision-making has
given rise to the development of new model-based tools and ap-
proaches. These include Dynamic Adaptive Policy Pathways
(Haasnoot et al., 2013), Adaptive Policy-Making (Kwakkel et al.,
2010), Real Options analysis (de Neufville and Scholtes, 2011;
Woodward et al., 2014), Info-Gap Decision Theory (Ben Haim,
2006; Korteling et al., 2013), decision scaling (Brown et al., 2012;
LeRoy Poff et al., 2015), Robust Decision-Making (Groves and
Lempert, 2007; Lempert and Collins, 2007), and Many Objective
Robust Decision-Making (Hadka et al., 2015; Herman et al., 2015;
Kasprzyk et al., 2013).

The availability of a variety of model-based analytical ap-
proaches for designing flexible robust plans raises a new set of
questions. How are the various approaches different? Where do
they overlap? Where are they complementary? Answering these
questions can help to pave the way for the future harmonization
and potential integration of these various approaches. It might also
help in assessing if certain approaches are more applicable in
certain decision-making contexts than others. Hall et al. (2012)
compare Info-Gap Decision Theory and Robust Decision-Making.
They conclude that along quite different analytical paths, both ap-
proaches arrive at fairly similar but not identical results. Matrosov
et al. (2013b) also compare Info-Gap and Robust Decision-Making.
They reach a similar conclusion and discuss in more detail the
complementary character of the analytical paths used by both ap-
proaches. Matrosov et al. (2013a) compare Robust Decision-Making
with an economic optimization approach (UK Water Industry
Research (UKWIR), 2002). In this case, the results are quite
different, suggesting a need to combine both approaches. Roach
et al. (2015, 2016) compare Info-Gap Decision Theory and robust
optimization. They conclude that there are substantial differences
between the plans resulting from these two approaches, and argue
in favor of mixed methodologies. Gersonius et al. (2015) compare a
real options analysis (in detail reported in Gersonius et al., 2013)
with an adaptation tipping point analysis (Kwadijk et al., 2010).
They highlight the substantial differences in starting points and
suggest that both approaches could be applied simultaneously.

In this paper, we compare the Dynamic Adaptive Policy Path-
ways (DAPP) approach (Haasnoot et al., 2013) with Robust
Decision-Making (RDM) (Groves and Lempert, 2007). The Dynamic
Adaptive Policy Pathways approach has not been compared before
with any of the other model-based analytical approaches. We
choose to compare it with RDM as it has served as a benchmark
against which other approaches have been compared. The aim of
the comparison is to provide insight into the different analytical
paths followed by the two approaches. What information and tools
are needed, what decision relevant insights are being generated,
and how different is the resulting plan emerging from the appli-
cation of the two approaches? We compare both approaches using
a stylized case, inspired by a river reach in the Rhine Delta of the
Netherlands (Haasnoot et al., 2012).

From a conceptual point of view, RDM is an iterative process for
developing a robust plan. Robust decision-making provides little
guidance on how this robustness is to be achieved, resulting in
some claims that RDM is intrinsically static. This claim, however, is
at odds with various RDM applications that produce adaptive plans
(e.g. Bloom, 2015; Groves et al., 2013, 2014). To provide guidance in
the development of an adaptive plan using RDM, we draw on
adaptive policymaking (Hamarat et al., 2013; Kwakkel et al., 2010).
In contrast, the DAPP approach primarily emphasizes dynamic
adaptation over time and specifies a stepwise approach for devel-
oping such plans. This stepwise approach is more open ended with
respect to how models can be used in it. To do this, we draw on
earlier work on the use of multi-objective robust optimization for
the design of adaptation pathways (Kwakkel et al., 2015).

Given this setup, we can already highlight some key differences.
Since RDM is an iterative process where one or more candidate
plans are stress-tested over a range of uncertainties, the compu-
tational costs are primarily dependent on the number of plans that
are tested and the number of cases needed to provide reliable
insight into their vulnerabilities. In contrast, the multi-objective
optimization approach exhaustively explores the design space
and is, therefore, computationally more expensive. This implies
also that in RDM the design space is not analyzed with the same
rigor as in the multi-objective optimization approach.

In Section 2, we introduce both Robust Decision-Making and the
Dynamic Adaptive Policy Pathways approach in more detail. In
Section 3, we introduce the case to which both approaches are
applied. Section 4 contains the Robust Decision-Making applica-
tion, and Section 5 contains the Dynamic Adaptive Policy Pathways
application. We compare the results in Section 6. Section 7 presents
the conclusions.

2. Background on Robust Decision-Making and Dynamic
Adaptive Policy Pathways

2.1. Robust Decision-Making

There are four main steps in RDM, as shown in Fig. 1. The first
step is a generic policy analytic decision structuring activity that
aims at conceptualizing the system under study, and identifying the
key uncertainties pertaining to this system, themain policy options,
and the outcomes of interest. This step often involves stakeholder
interaction. The second step is case generation. In this step, the
behavior of one or more models of the system under study is sys-
tematically explored across the identified uncertainties, and the
performance of candidate strategies is assessed. The third step is
scenario discovery (Bryant and Lempert, 2010). Using statistical
machine learning algorithms, the performance of candidate stra-
tegies across the generated cases is analyzed to reveal the condi-
tions under which candidate strategies perform poorly. These
conditions reveal vulnerabilities of the strategies, in light of which
they can be modified. Step two and three together are sometimes
also referred to exploratory modeling (Bankes et al., 2013). The
fourth step is trade-off analysis, in which the performance of the
different strategies is compared across the different outcome in-
dicators, thus providing an additional source of information that
can be used in redesigning the strategy. The steps can be iterated
until a satisficing robust strategy emerges.

Scenario discovery forms the analytical core of RDM (Bryant and
Lempert, 2010; Groves and Lempert, 2007). Themain statistical rule
induction algorithm that is used for scenario discovery is the Pa-
tient Rule Induction Method (PRIM) (Friedman and Fisher, 1999).
PRIM aims at finding combinations of values for the uncertain input
variables that result in similar characteristic values for the outcome
variables. Specifically, PRIM seeks a set of subspaces of the uncer-
tainty space within which the value of a single output variable is
considerably different from its average value over the entire
domain. PRIM describes these subspaces in the form of hyper



Fig. 1. The RDM process (Lempert et al., 2013).
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rectangular boxes of the uncertainty space. In this paper, we use a
Python implementation of PRIM, which has been demonstrated to
be effective even in case of heterogeneously typed data (Kwakkel
and Jaxa-Rozen, 2016). In the context of scenario discovery, the
input for the PRIM analysis is the set of cases, or computational
experiments. The results of these cases are classified using a binary
classification, indicating whether a given case is of interest or not.
To assess the quality of the identified hyper rectangular boxes,
analysts can look at the coverage and density of a given box.
Coverage is the fraction of all the cases that are of interest that fall
within the box. Density is the fraction of cases within the box that
are of interest (Bryant and Lempert, 2010). In addition, it is
customary to look at the quasi-p values for each of the dimensions
of the hyper-rectangular box, which indicate whether the restric-
tion imposed by the box on each of the dimensions is statistically
significant. This value is calculated using a one-sided binomial test,
assuming a 95% confidence interval (see Bryant and Lempert, 2010
for a detailed discussion).

The RDM process describes the steps necessary for the identi-
fication of vulnerabilities and tradeoffs. It does not provide guid-
ance on how to address the identified vulnerabilities in the (re)
design of a strategy. In many applications of RDM, the results of
scenario discovery are used by the analyst, in interaction with
stakeholders, to formulate a new strategy that has a reduced
sensitivity to the identified vulnerability. The lack of explicit
guidance on how to address vulnerabilities identified through
scenario discovery might create the impression that RDM results
in static strategies (Walker et al., 2013). A more careful review of
the RDM literature reveals, however, that RDM can be used to
design strategies that are adapted over time in response to how
the future unfolds (see e.g. Bloom, 2015; Groves et al., 2013, 2014;
Lempert and Groves, 2010). Adaptivity is created through a sign-
post and trigger system, where a strategy is modified in a pre-
specified way in response to a pre-specified trigger. This is in
line with ideas found in Assumption-Based Planning (Dewar,
2002; Dewar et al., 1993) and Adaptive Policy-Making (Kwakkel
et al., 2010; Walker et al., 2001). While RDM provides clear
guidance on the detection of vulnerabilities, it is less clear on how
the signposts and triggers are to be specified. The description of
this in Groves et al. (2013, 2014) suggests that signposts are con-
nected to the vulnerabilities, but the specification of triggers is not
further clarified.

The adaptive robust policy design advocated by Hamarat et al.
(2013) explicitly combines the RDM approach with Adaptive
Policy-Making, and offers guidance on when vulnerabilities iden-
tified through scenario discovery are better addressed through
static action or through dynamic adaptation. If a given uncertain
factor is part of all the vulnerabilities identified through scenario
discovery, this approach advocates a static solution. Adaptivity is
introduced to copewith uncertain factors that are unique to a given
vulnerability. Signposts can be derived from this. Where possible,
signposts are tied directly to the uncertain factor. A similar
approach of tying scenario discovery results to signposts is sug-
gested by Bloom (2015). Triggers can than be specified using expert
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opinion (Haasnoot et al., 2013; Kwakkel et al., 2012), detailed
model-based analyses (Haasnoot et al., 2015), or through robust
optimization (Hamarat et al., 2014). In this paper, we follow the
suggestions of Hamarat et al. (2013) for supporting the design of
adaptive policies using RDM.
2.2. Dynamic Adaptive Policy Pathways

The Dynamic Adaptive Policy Pathways (DAPP) approach com-
bines two bodies of literature on planning under uncertainty: work
on Adaptive Policy-Making (Kwakkel et al., 2010; Walker et al.,
2001); and work on adaptation tipping points (Kwadijk et al.,
2010; Offermans, 2012) and policy pathways (Haasnoot et al.,
2012). Fig. 2 shows the overall approach. For a more detailed
description, see Haasnoot et al. (2013).

The first step in DAPP is to describe the setting, including ob-
jectives, constraints, major uncertainties, and a definition of suc-
cess. Next, vulnerabilities and opportunities of the status quo are
assessed by identifying adaptation tipping points: the conditions
under which the status quo starts to perform unacceptably for the
relevant uncertainties, using expert judgment and/or model sim-
ulations. The timing of an adaptation tipping point (use-by date) is
derived from linking the use-by conditions with scenarios, or from
the changing performance over time resulting from transient or
semi-static model simulations. This reveals if and when policy
Fig. 2. The Dynamic Adaptive Policy Pathways approach (adapted from Haasnoot et al.,
2013).
actions are needed to obtain the desired outcomes.
Based on this problem analysis, policy actions are identified to

address vulnerabilities and seize opportunities. For these policy
options, one also needs to assess the conditions under which they
might meaningfully be used, as well as the conditions under which
they are insufficient for reaching the desired outcomes. Once the
set of policy actions is deemed adequate, pathways can be designed
and evaluated. A pathway consists of a concatenation of policy
actions, where a new policy action is activated once its predecessor
is no longer able to meet the definition of success.

Based on the evaluation of the pathways, a manageable number
of preferred pathways can be identified. These preferred pathways
can be improved through contingency planning, which requires the
specification of ‘corrective’, ‘defensive’, and ‘capitalizing’ actions,
and an associated monitoring system with ‘trigger values’ that
would result in the implementation of the actions. In light of the
final Adaptation Pathways Map, a plan for action can be made,
which specifies the actions to be taken immediately, the de-
velopments to monitor, and the conditions under which contin-
gency actions should be taken. For a more detailed discussion of
each of the individual steps, see Haasnoot et al. (2013).

Fig. 3 shows a stylized example of an Adaptation Pathways Map.
In the map, starting from the current situation, targets begin to be
missed after four years. Following the grey lines of the current
policy, one can see that there are four options. Actions A and D
should be able to achieve the targets for the next 100 years in all
climate scenarios. If Action B is chosen after the first four years, a
tipping point is reached within about five more years; a shift to one
of the other three actions will then be needed to achieve the targets
(follow the orange lines). If Action C is chosen after the first four
years, a shift to Action A, or D, or a combination of C with B will be
needed in the case of a high-end scenarios (follow the green lines).
In all other scenarios, the targets will be achieved for the next 100
years. The colors in the scorecard refer to the actions: A (red), B
(orange), C (green), and D (blue).

3. The Waas case

To compare and contrast Robust Decision-Making and the Dy-
namic Adaptive Policy Pathways approach, we use a hypothetical
case, called ‘the Waas’ (Haasnoot et al., 2012; Kwakkel et al., 2015).
The case is based on theWaal, a river reach in the Rhine Delta of the
Netherlands. The case study area is shown in Fig. 4. The river and
floodplain are highly schematized, but the characteristics are
realistic. Embankments bind the river. The floodplain is separated
into five dike rings. A large city is situated on higher grounds in the
southeast part. Smaller villages exist in the remaining area,
including greenhouses, industry, conservation areas, and pastures.
In the future, climate change and socio-economic developments
may increase the pressure on the available space and the potential
damages, so actions would be needed.

The meta model of theWaas was derived from validated models
for an area similar to the Waas - the river Waal in the Netherlands.
The cause-effect relations are implemented using PCRaster, a grid-
based spatial analysis tool for dynamic modeling (van Deursen,
1995). The model was checked for internal consistency and plau-
sibility of the outcomes by expert judgment. In the model, dis-
charges arising from the transient climate scenarios are translated
into water levels using discharge rating-curves, representing the
relationship between river discharge andwater level (stage) at each
river kilometer. The water levels are translated into a 2D surface,
and are compared with the dike heights derived from the elevation
map. Subsequently, the model calculates the probability of dike
failure caused by piping or by wave overtopping by examining the
difference between dike level and water level (van Velzen, 2008).



Fig. 3. An example of an Adaptation Pathways Map (left) and a scorecard (right) presenting the costs and benefits of the 9 possible pathways presented in the map. The scenario
determines the speed with which a route on the map is traversed.

Fig. 4. The Waas case study area (Haasnoot et al., 2012).
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Whether the dike fails or not depends on a random number
selected between 0 and 1. If that number is lower than the proba-
bility of dike failure, the dike is assumed to fail, even if the water
does not overtop it. In the case of a dike failure, the water level is
considered to be equal to the river water level in the whole dike
ring. Awater depthmap is derived from an intersection of thewater
level (assuming a planar surface) and a digital elevation map, and is
corrected for higher lying areas that prevent some lower parts from
flooding. Damage due to the flooding of dike rings is calculated
from the water depth and damage relations (De Bruijn, 2008;
Haasnoot et al., 2011). Using these relations, the model calculates,
for each land use, the flood impacts per hectare, by multiplying the
maximum potential flood damage in the cell under consideration
by the water level-dependent damage factor (value between 0 and
1). This yields the total damage for sectors such as agriculture, in-
dustry, and housing. Casualties are assessed using water depth,
land use, and flood alarms triggered by the probability of dike
failure. The costing of the various options is based on the analysis of
each of the options in isolation. This is a simple approach, which
overlooks interactions and scale effects that in practice might be
relevant. We do not include discounting in either the costs or
damages. For more details on the meta model, see Haasnoot et al.
(2012).

The analysis takes into account uncertainties related to climate
change, land use, system characteristics, and the effects of policy
actions (Table 1). The effects of different climate change scenarios
are considered through changes in the river discharge (see
Haasnoot et al., 2012; Haasnoot et al., 2015 for details). Both climate
change and land use uncertainty are included using pre-specified
transient scenarios (Haasnoot et al., 2011, 2015). Uncertainties in
the cause-effect relations for the fragility of dikes and economic
damage functions are taken into account by putting a bandwidth of
plus and minus ten percent around the default values; for each
experiment, we randomly pick a value in this interval and update
the default values accordingly. This bandwidth was chosen for
illustrative purposes, but was informed by discussion with experts.
The three outcomes of interest are the cumulative number of ca-
sualties, cumulative flood damage in millions of euros, and cumu-
lative capital costs of the policy options in millions of euros. We use
100 years as the time horizon.

Table 2 provides an overview of the 20 policy options that are
explored. The actions include flood prevention measures such as
heightening the dikes, strengthening the dikes, and giving room for
the river, and flood mitigation actions such as upstream collabo-
ration, evacuation preparation, early alarms for evacuation, addi-
tional embankments around cities, and houses on stilts. These
options can be combined into packages that are executed simul-
taneously, or into sequences where one option follows a previous
action.



Table 1
Overview of the uncertainties.

Name Short description Range or set of values

Climate
change

For river discharge and precipitation, 10 realizations for each of three climate
change scenarios are considered (Haasnoot et al., 2012; Haasnoot et al., 2015). These
three climate change scenarios are: no change, moderate climate change (G), and
severe climate change (Wþ) (van den Hurk et al., 2007, 2008). The river discharge
numbers are based on those for the Rhine river.

1e30

Land use Land use will change in the coming 100 years. Seven alternative land use scenarios
are considered: slow or fast urbanization, de-urbanization, sustainable growth,
more nature, urbanization followed by de-urbanization, and no change.

Slow urbanization, fast urbanization, de-urbanization, sustainable
growth, more nature, urbanization followed by de- urbanization, and no
change

Fragility of
the dikes

There is uncertainty about the relationship between the relative difference between
the height of a dike and the water level, and the propensity of a dike to fail. A
bandwidth around the default fragility relation is considered. This bandwidth is
chosen for illustrative purposes. In a real world case, this bandwidth should be
grounded in evidence.

�10%e10%

Damage
functions

There is parametric uncertainty about the damage functions used to calculate the
damage from flooding and the damage to shipping. A bandwidth is considered. This
bandwidth is chosen for illustrative purposes. In a real world case, this bandwidth
should be grounded in evidence.

�10%e10%

Policy Two of the candidate policy actions include upstream collaboration. The effect of
this on the discharge is uncertain. A wide bandwidth is taken into account.
Other options include adding or modifying dikes and changing the way we live,
which are affected by the aforementioned uncertainty about the fragility of the dikes
and the damage functions.

1e1.6

Table 2
Overview of policy options.

Name Description

1 No policy Do nothing
2 Dike

1:500 þ 0.5 m
Dike height rise to cope with a 1:500 discharge, based on measurements

3 Dike 1:1000 Dike height rise to cope with a 1:1000 discharge, based on measurements
4 Dike 1:500 extr. Dike height rise to cope with a 1:500 discharge, based on extreme climate change scenario
5 Dike 1:1000 extr. Dike height rise to cope with a 1:1000 discharge, based on extreme climate change scenario
6 Dike 2nd Q � 1.5 Dike height rise: adapting to 1.5 times the second highest discharge ever measured (‘rule of thumb’ measure)
7 Dike Climate dikes Strength of the dikes improved by a large widening of the dikes
8 Dike Wave

resistant
Strength of the dikes improved with asphalt coverage (instead of grass), resulting in wave-overtopping resistant dikes

9 RfR Side channel Room for the river - With extra side channels, the river is given more space after a threshold discharge is exceeded
10 RfR Small Scale Room for the river - Small scale: with extra side channels, the river is given more space after a threshold discharge is exceeded
11 RfR Medium Scale Room for the river - Medium scale: with extra side channels, the river is given more space after a threshold discharge is exceeded
12 RfR Large Scale Room for the river - Large scale: with extra side channels, the river is given more space after a threshold discharge is exceeded
13 Coop Small Upstream cooperation: maximum discharge reduced to 20.000 m3/s
14 Coop Medium Upstream cooperation: maximum discharge reduced to 18.000 m3/s
15 Coop Large Upstream cooperation: maximum discharge reduced to 14.000 m3/s
16 DC Floating Floating houses: resulting in damage functions with 10 times less damage
17 DC Dikes Fort cities: extra embankments around the cities
18 DC Mounts All cities are raised by 4 m, resulting in houses on an area of elevated ground
19 DC Elevated Building houses on stilts so that they are raised above the ground and water can pass underneath.
20 Alarm Early Evacuate inhabitants in case the chance of dike failure is higher than 20% (default value is 40%), resulting in fewer casualties but potentially more

false alarms
21 Alarm Education Inform and educate inhabitants on what to do in case of a (potential) flood emergency
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4. RDM analysis of Waas case

The RDM process for the Waas case begins by exploring the
performance of the system in the absence of any policy across 5000
computational experiments. Based on prior experience with the
Waas case, 5000 experiments is sufficient for getting a fair under-
standing of the behavior of the system across the various uncertain
factors. These experiments, which cover the uncertainty space, are
generated using Latin Hypercube sampling (McKay et al., 1979). The
performance of the system in terms of cumulative number of ca-
sualties and cumulative flood damage is shown in Fig. 5. Given that
there are no policy options, there are no costs.

In order to identify the combination of uncertainties under
which the system performs poorly, we used scenario discovery. The
correlation between casualties and flood damage is 0.8, so wewere
able to use either outcome of interest. Here we use flood damage,
and classify a scenario as being of interest if

f ðxÞ ¼
�
1; x>50;000
0; otherwise

where x is the cumulative flood damage. The threshold of 50,000
million euros is chosen in light of in Fig. 5. In total, 972 out of the
5000 computational experiments are of interest. Table 3 shows
the results from the scenario discovery. We are able to explain
91% of the 972 cases. In 90% of the cases of severe climate change
in combination with any additional urbanization, cumulative
flood damage will be higher than 50,000 million euros. If the
system faces a severe climate change scenario in combination
with increasing population density because of ongoing



Fig. 5. Boxplot for casualties and flood damage across 5000 scenarios in the absence of any policy options.

Table 3
First iteration scenario discovery results for the no policy case.

Coverage 0.91
Density 0.90

Uncertain factor Set of values p-value

Climate scenario Wþ 3.7e-291
Land use scenario Urbanization large and slow, urbanization de-urbanization, urbanization large and fast, sustainable growth 6.3e-137
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urbanization, the result is high damages and high casualties.
Conversely, if the population density declines, even in case of
severe climate change, there is limited reason for action.

To cope with climate change and reduce flood damage in case of
urbanization, a wide variety of pre-specified policy options is
available. We tested dikes designed for a 1:500 flood þ0.5 m (op-
tion 2), climate dikes (option 7), room for the river (option 11),
upstream cooperation (option 14), and early alarm (option 20). Of
these, options 2 and 11 are the most promising.

Fig. 6 shows boxplots for these two policy options for casualties,
flood damage, and costs. Dike raising has variable costs, because the
design discharge is updated in light of the observed river discharge.
So, the actual height of the dike changes over the course of a
simulation and differs from one computational scenario to the next.
This continuous updating and associated dike heightening is a
standard operating procedure in the Dutch context.

Both raising the dikes and giving more room to the river help to
improve the situation, but there might be room for further
improvement. To investigate this, we performed scenario discovery
on the results for both policy options. Again, we analyzed the cor-
relation between casualties and flood damage and found that it was
0.8, so we focus on flood damage. We update our rule for classifying
a scenario as being of interest

f ðxÞ ¼
�
1; x>10;000
0; otherwise

where x is cumulative flood damage. For these new results, it is
more difficult to find a clear explanation. That is, we are unable to
find a single explanationwith both high coverage and high density.
We can, however, find two boxes that jointly explain over 64% of
the cases of interest (see Table 4). These two boxes suggest that
damages can occur on both moderate and severe climate change, in
combination with urbanization. Interestingly, compared to the
previous iteration of scenario discovery, the urbanization followed
by de-urbanization land use scenario is no longer included as part
of the first identified box. This suggests that if population density
declines in the future, there is less reason for action.

The second iteration of scenario discovery suggests that neither
of the individual actions is sufficient in the face of moderate or
severe climate change and increasing population density. We
therefore need to improve the policies. Here, we focus only on
improving the dike raising strategy, and consider four alternatives:
dike raising to a 1:1000 river discharge (option 3); dike raising
1:500 combined with alarm early (options 2 and 20); dike raising
1:500 combined with room for the river (options 2 and 12); and
dike raising 1:500 combined with climate dikes (options 2 and 7).
Of these, the combination of dike raising and alarm early (options 2
and 20) is ineffective. The boxplots for the other three options are
shown in Fig. 7.

The three policy options all have improved the performance
compared to dike raising 1:500 in isolation. To assess whether
there is room for further improvement of the policies, we again
perform scenario discovery, but now separately for casualties and
damages, because they are no longer strongly correlated. For ca-
sualties, we classify a scenario as being of interest if

f ðxÞ ¼
�
1; x>300
0; otherwise

where x is the number of casualties. 3773 out of the 15,000
scenarios meet this criterion. Table 5 shows the results from this



Fig. 6. Boxplots for casualties, flood damage, and costs for the two best performing policy options.
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analysis. A virtually identical result is obtained when we do
scenario discovery on damages, using the same classification rule
as in the previous iteration. The scenario discovery results sug-
gest that if actions are taken conditional on whether the system
is experiencing a particular land use and/or climate
scenario, we might be able to further improve the efficacy of the
policy.

Earlier work on the Rhine (Haasnoot et al., 2015) suggests that
Table 4
Second iteration scenario discovery results for the two best performing policy options.

Box 1 Box 2

Coverage 0.35 0.29
Density 0.61 0.48

Uncertain
factor

Set of values p-
value

Set of

Climate
scenario

Wþ, G 9.3e-
15

Wþ, G

Land use
scenario

Urbanization large steady, urbanization large and fast,
sustainable growth

3.2e-
10

Urbani
urbani
one of the best indicators for detecting climate change is the
running average over 30 years of the number of days in which the
river discharge is below 1200 m3/s. If we use this as a signpost, and
move to a 1:1000 design height for dikes only in case low flows
strongly suggest a severe climate change scenario, wemight be able
to further improve the performance of the policy. We test this for
two options.
value p-
value

2.1e-
3

zation large steady, urbanization large and fast, Urbanization de-
zation, sustainable growth

5.9e-
8



Fig. 7. Boxplots for casualties, damages, and costs for the three best performing candidate policies in the second iteration.
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Table 5
Third iteration scenario discovery results for the three best performing policy options.

Coverage 0.41
Density 0.54

Range p-values

Climate scenario Wþ 3.6e-81
Land use scenario Urbanization large steady, urbanization de-urbanization, urbanization large and fast, sustainable growth 6.3e-137

Fig. 8. Boxplot for casualties, flood damage, and costs for two alternative adaptive policies.
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� 1:500, followed by 1:1000 in case of climate change signal
(option 2, followed by option 3)

� 1:500 with climate dikes, followed by dike strengthening to
1:1000 in case of climate change signal (options 2 and 7, fol-
lowed by option 3)

The resulting boxplots are shown in Fig. 8. It appears that both
adaptive policies are effective. We are able to further reduce costs,
damages, and casualties. Further improvement might be achieved
by adding actions conditional on the specific land use scenario as
well.
5. DAPP analysis of Waas case

Adaptation pathways can be designed in various ways. Here, we
use the multi-objective robust optimization approach first pre-
sented by Kwakkel et al. (2015). A similar approach for the
sequencing of urban water supply augmentation is presented by
Beh et al. (2015). Robust optimization methods aim at finding, in
the presence of uncertainty about input parameters, optimal out-
comes that are not overly sensitive to any specific realization of the
uncertainties (Bai et al., 1997; Ben-Tal and Nemirovski, 1998, 2000;
Bertsimas and Sim, 2004; Kouvalis and Yu, 1997). In robust
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optimization, the uncertainty that exists about the outcomes of
interest is described through a set of computational experiments
(Mulvey et al., 1995), and robustness is defined over this set of
experiments. We assess the robustness of candidate pathways on
multiple independent objectives, avoiding the need tomake a priori
assumptions about decision-maker tradeoff preferences.

The multi-objective robust optimization problem for the design
of adaptation pathways for the Waas is

Minimize F
�
lp;r

�¼�
ycosts;scosts;ycasualties;scasualties;ydamage;sdamage

�

where lp;r ¼ ½p1; p2; p3; r1; r2� cp2P;cr2R

where lp,r denotes a policy pathway, pm is a policy action, P is the set
of policy actions as specified in Table 2, rn is a rule, R is the set of
rules, yi is the set of outcomes for outcome
idfcosts; casualties; damageg across a set of computational exper-
iments, yi is the mean value of yi, and si is the standard deviation of
yi.

A rule specifies the adaptation tipping point for activating the
next action on an adaptation pathway. These rules are related to
performance of the system in terms of casualties and economic
damages. Performance is evaluated and classified into no event,
small event, large event, and extreme event. We activate a new
action if, in the previous five years, an event of the pre-specified
level is encountered.

There is a wide literature on robustness and robustness metrics
(Herman et al., 2015; Lempert and Collins, 2007; Rosenhead et al.,
1973; Wald, 1945). Here, we use the mean across a set of compu-
tational experiments and the dispersion around this mean
measured by the standard deviation. There are three reasons for
using the mean and the standard deviation separately. First, it is
easier to interpret than the signal to noise ratio as used in earlier
work (Hamarat et al., 2014; Kwakkel et al., 2015). Second, the signal
to noise ratio is not a monotonically increasing objective function
(Ray et al., 2013). Third, it provides decision-relevant insight into
the tradeoff between average performance and the deviation from
this average performance.

There exist various approaches for solving multi-objective
optimization problems. In this paper, we use BORG, a state of the
art genetic algorithm in which the evolutionary operators co-
evolve with the search (Hadka and Reed, 2013). In various com-
parisons, BORG has been demonstrated to be among the best
available genetic algorithms for solving multi-objective optimiza-
tion problems (Hadka and Reed, 2013; Reed et al., 2013).

In this case, we use 200 computational experiments and
calculate our robustness metrics over this set of 200 experiments.
An analysis of ten randomly generated pathways revealed that
adding more experiments did not substantially change the value of
the robustness metrics. We evaluated the objective function 1000
times using the same set of computational experiments, for a total
of 200,000 runs of the simulation model. We used ε-progress
(Hadka and Reed, 2013) as an indicator for the rate of convergence
of the genetic algorithm. It indicates whether the algorithm has
been able to find better solutions. There was no ε-progress after a
bit over 800 evaluations of the objective function. This suggests
that the algorithm has converged. So, after 200,000 runs of the
model, the algorithm has found a Pareto approximate set of robust
pathways.

The set of eleven pathways and their scores across the six
objective functions identified by the optimization is shown in Fig. 9.
The optimization has produced a heterogeneous set of solutions.
The pathways are sorted by mean cost, with the cheapest solutions
at the top, and the most expensive solutions at the bottom. There is
a clear tradeoff between costs on the one hand, and damages and
casualties on the other. Cheaper solutions are less effective. There
are, however, some interesting solutions that are nearly as effective
as the most expensive solutions, while being substantially cheaper
on average. The main tradeoff in these solutions is between the
mean cost and the standard deviation of the costs.

A final step is to transform the identified pathways into an
adaptation map. For this, it is necessary to analyze the timing of the
adaptation tipping points. This timing is scenario dependent.
Therefore, it differs from one computational experiment to the
next. We generated 5000 computational experiments, which we
subsequently grouped based on whether there is ongoing urbani-
zation or not, and whether there is severe climate change or not.
The number of experiments is based on prior experience with the
case and is illustrative. This gives us four groups of computational
experiments, where the timing of the adaptation tipping points is
quite different in each experiment. For each group, we analyzed the
timing of the adaptation tipping points for the different pathways,
and for illustrative purposes used the 25th percentile as the timing.
The resulting figure is shown in Fig. 10.

From Fig. 10, we draw several conclusions. First, the alarm early
option is useful only in the de-urbanization scenarios. As can be
seen in the bottom two figures, the option is never used in case of
ongoing urbanization. Second, if we compare the maps, we see that
many actions are needed earlier in case of severe climate change,
compared to no or limited climate change, but that the layout of the
map differs between the de-urbanization and urbanization sce-
nario. Another useful feature of the adaptation pathways map is
that it provides insights into the sequencing of actions, and which
actions remain open if one goes down a particular pathway. So, if
one starts with a small or medium scale room for the river action,
we see that these actions will be sufficient for only a few years.
After either of these actions, the next action is to enhance education
related to evacuations. In contrast, if we start with a dike
1:500þ 0.5m, we see that this is sufficient for somewhere between
50 and 75 years depending on the severity of climate change. After
this, there are several options open. We can either strengthen the
dikes in light of the estimated worst case climate change discharge
(i.e. dike 1:500 extr), or we can choose to build floating homes.

6. Comparison of the approaches

In this paper, we applied both RDM and DAPP to the same case
in order to get insights into the different analytical paths followed
by the two approaches. What information and tools are needed,
what decision relevant insights are being generated, and how
different is the resulting plan emerging from the application of the
RDM and DAPP approaches? More specifically with respect to the
object of comparison, a distinction can be made between the plan
as written, the process of drafting the plan, and the actual perfor-
mance of the chosen plan after implementation (Kwakkel and van
der Pas, 2011; Verschuren and Hartog, 2005; Walls et al., 1992,
2004). In answering the questions, we focus on the plan as writ-
ten and the process of drafting the plan.

6.1. Information and tools needed

What information and tools are needed for each approach, and
are there any important differences in this regard? Regarding the
required information, both RDM and DAPP can use the same system
model for their analysis, take into account the same uncertain
factors, and consider the same outcomes of interest. Both applica-
tions require specific software. RDM requires software for the
generation of cases and for scenario discovery. The multi-objective
robust optimization approach used for the design of pathways also



Fig. 9. Parallel coordinate plot of the performance on the objective functions for each of the robust pathways.
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requires software for the generation of cases, and a state-of-the-art
multi-objective optimization algorithm.

An important difference with respect to the tools is their
computational cost. For evaluating 14 policies in the RDM analysis,
70,000 computational experiments were used. This number could
have been lower if we had used (say) 2500 experiments per policy
rather than 5000. In contrast, the robust multi-objective optimi-
zation approach for DAPP required 200,000 computational exper-
iments. Introducing alternative stopping conditions, instead of a
fixed number of function evaluations, might lower this. The dif-
ference in required computational resources has implications for
the conditions under which each approach can be used, and has
consequences for the design of models that are fit for purpose (see
also Haasnoot et al., 2014 for a more in depth discussion on this
topic).

Another relevant difference between the approaches is with
respect to the required information. In the RDM analysis, at each
iteration we had to specify what results were of interest. This im-
plies the implicit use of a satisficing understanding of robustness
using the domain criterion (Starr, 1963). That is, effectively one is
trying to minimize the fraction of cases that are of interest. If one
uses RDM in practice, the definition of success would be specified in
consultationwith the stakeholders during the scoping phase. In our
application, we refined the definition of success after the first
iteration. This was primarily motivated by algorithmic reasons:
using the stricter definition of success in the first iteration results in
an overload of cases of interest, resulting in many overlapping
boxes from the PRIM analysis. In contrast, the multi-objective
robust optimization approach requires the explicit specification of
what is meant by robustness. In this case, we defined robustness in
terms of the mean and standard deviation for each outcome of
interest. The discussion with stakeholders on what is acceptable or
unacceptable performance would take place only after the Pareto
approximate set of pathways had been identified.

A final difference with respect to the information required for
each approach is that the multi-objective robust optimization
approach requires an up-front specification of the policy options,
the possible rules that can be used in sequencing options, and
constraints regarding theways inwhich the options can and cannot
be combined. In contrast, the RDM application requires only the
availability of one or more policy options, and some expert judg-
ment on how to combine or sequence options. In the final iteration
of the RDM analysis, we derive an interesting signpost directly from
the scenario discovery results, rather than its being defined up
front, and use this for designing an adaptive plan.

6.2. Decision-relevant insights

What are the similarities and differences with respect to
decision-relevant insights? A first difference is with respect to the
thoroughness with which the design space of policy options is
being explored. DAPP aims at developing an adaptation pathways
map that contains a set of possible pathways that serves as input to
a conversation between stakeholders. RDM remains silent on
whether an analyst should focus on developing a single robust
strategy, or whether the analysis should be used to produce a more
diverse set of strategies. In the case study using RDM, we explored
14 policies, where some of the policies are refinements of previ-
ously analyzed policy options. There is thus a strong path-
dependency in the RDM analysis. The robust multi-objective opti-
mization approach to the design of adaptation pathways, in
contrast, explored 1000 different adaptation pathways, and pre-
sents the optimally robust pathways in a pathways map, showing
options, multiple sequences of actions, and path-dependencies of
actions.

A second policy-relevant insight is that the set of pathways that
emerges from the multi-objective robust optimization approxi-
mates the Pareto optimal solutions. RDM cannot offer the same
guarantee that the resulting solution, or set of solutions, is opti-
mally robust.

A third important difference in terms of policy-relevant insights
is that the scenario discovery results give very good insights into
the combination of uncertain future developments under which
the system fails. This is of great use in identifying signposts for
adaptive policies, as evidenced by the pro-active signposts that are
introduced in the RDM analysis. This type of insight is absent from
the multi-objective robust optimization approach, which relies
instead on the upfront specification of possible signposts and
triggers that are used to adapt before an adaptation tipping point is
reached.

6.3. Differences in resulting plans

If we look at the plans that emerge from both the RDM process
and the robust optimization approach to the design of adaptation
pathways, we make several observations. First, it is possible to



Fig. 10. Adaptation pathways maps for four groups of computational experiments.
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generate adaptive strategies using RDM, in contrast to the sug-
gestion in Walker et al. (2013) that RDM aims at developing static
plans rather than adaptive plans. To develop adaptive plans using
RDM, however, we added concepts from adaptive policymaking
(Hamarat et al., 2013; Kwakkel et al., 2010; Walker et al., 2001),
similar to Bloom (2015). Second, the solutions emerging from the
two approaches are different. RDM resulted in a single adaptive
plan that specifies the short-term actions and the long-term op-
tions, including the conditions under which to use them. In
contrast, the robust optimization approach resulted in an
adaptation map with 11 distinct pathways. These 11 pathways can
serve as a starting point for making an adaptive plan that specifies
short-term actions and long-term options.

If we compare the set of solutions analyzed over the course of
the RDM process to the set of solutions emerging from the robust
optimization, we observe that only one solution is common to both:
raising dikes to a 1:1000 discharge. This is partly due to the fact that
the rules used in the robust optimization are quite different from
the signpost developed in RDM. The rules used in the robust opti-
mization approach to the design of adaptation pathways are



Fig. 11. Two ways to combine RDM and DAPP in a policy analysis study. Top: RDM techniques followed by DAPP. Bottom: DAPP techniques followed by RDM. Both ways result in an
adaptive plan.
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reactive, while the signpost developed in light of the RDM analysis
is more proactive. It would be interesting to include the signpost
identified in the RDM analysis and one related to land use change as
additional possible rules in the robust optimization. We do observe,
however, that both RDM and the robust optimization approach
come up with solutions that progressively raise the dikes to more
stringent design discharges. In the RDM analysis, we move from
1:500 to 1:1000. One of the pathways in the DAPP analysis moves
from 1:500 þ 0.5 m to 1:500 for the worst-case climate scenario. If
we compare the performance of the set of pathways with the
performance of the strategy resulting from RDM using the same
robustness definitions as used in the multi-objective optimization,
we see that the RDM solution is in the Pareto approximate set,
together with all the pathways (see Supplementary material for the
analysis).
7. Conclusions

The Dynamic Adaptive Policy Pathways approach and Robust
Decision-Making are two analytical model-based approaches for
supporting the design of robust strategies in the presence of irre-
solvable deep uncertainties. How are these two approaches
different? Where do they overlap? In what respects are they
complementary? We applied both approaches to the same stylized
case inspired by a river reach of the Rhine Delta in the Netherlands
in order to answer these questions.

Both RDM and DAPP can be used to design effective flexible
strategies. RDM is less computationally expensive than the robust
multi-objective optimization approach used for the design of
adaptation pathways. RDM also provides actionable insight into the
combination of factors that jointly determine if and when adapta-
tion is necessary. In contrast, the multi-objective robust optimiza-
tion approach used to develop adaptation pathways explores the
design space much more thoroughly. This results in the identifi-
cation of a heterogeneous set of robust pathways with clear
tradeoffs. It requires, however, the upfront specification of options
and rules for sequencing them, something that can be supported
through RDM.

The robust multi-objective optimization approach is one
approach for designing adaptation pathways. Other approaches
could be used instead. One key direction for future research is to
investigate how to modify the iterative RDM process, in which
candidate strategies are modified in light of scenario discovery
results, in order to develop adaptation pathways. The vulnerabil-
ities identified through scenario discovery are, from an analytic
perspective, closely related to adaptation tipping points. Specif-
ically, vulnerabilities identified through scenario discovery are a
multi-dimensional generalization of adaptation tipping points
(Kwadijk et al., 2010). This insight can serve as a starting point for
combining RDM and DAPP. There are various forms such a combi-
nation could take (Fig. 11). For example, one might start with the
RDM cycle and iteratively developmultiple adaptation pathways. In
such a combination, scenario discovery can be used for identifying
signposts and triggers. Alternatively, one could start with the
development of a set of pathways, for example through multi-
objective robust optimization or in a participatory manner, and
subsequently apply RDM to assess the performance of these
pathways.

In this paper we compared two analytical approaches for
developing climate adaptation strategies. There exist a variety of
other approaches, including decision scaling, real options, and Info-
Gap Decision Theory, which could be used for the same purpose.
Given the observed complementarities between RDM and DAPP in
this paper, and between Info-Gap and RDM in Hall et al. (2012) and
Matrosov et al. (2013b), we speculate that Info-Gap analyses could
also be of some value for designing adaptation pathways. Future
work is needed to explore the commonalities among DAPP, RDM,
decision scaling, and real options.

Software availability

The analyses reported in this paper rely on the exploratory
modeling workbench, which is available through GitHub; and
BORG, which is available through BitBucket. The relevant IPython
notebooks are included as Supplementary material. All additional
code and data files can be found online: https://github.com/
quaquel/EMS_RDM-DAPP-comparison. The simulation model it-
self is available upon request from its developer, Marjolijn
Haasnoot.
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